我的学习笔记

土猛的员外

【翻译】DSPY简易教程

目前,使用大型语言模型(LLMs)构建应用程序不仅复杂而且脆弱。典型的pipelines通常使用prompts来实现,这些prompts是通过反复试验手工制作的,因为LLMs对prompts的方式很敏感。因此,当您更改pipelines中的某个部分(例如LLM或数据)时,可能会削弱其性能—除非您调整prompts(或微调步骤)。

当您更改pipeline中的一部分时,例如LLM或数据,您可能会削弱其性能……

DSPy[1]是一个框架,旨在通过优先编程而不是prompt来解决基于语言模型(LM)的应用程序中的脆弱性问题。它允许您在更改组件时重新编译整个管道,以根据您的特定任务对其进行优化,而不是重复手动轮次的prompt工程。

虽然关于该框架的论文[1]早在2023年10月就已经发表了,但我是最近才知道的。在看了Connor Shorten的一个视频“DSPy解释!” 之后,我已经可以理解为什么开发者社区对DSPy如此兴奋了!

本文简要介绍了DSPy框架,涵盖了以下主题:

DSPy(D declarative S self - improved Language P programs (in Python)”,发音为“dee-es-pie”)[1]是一个由斯坦福NLP研究人员开发的“基于基础模型的编程”框架。它强调编程而不是提示,并使构建基于lm的管道远离操作提示而更接近编程。因此,它旨在解决构建基于lm的应用程序中的脆弱性问题。

DSPy还通过将程序的信息流与每个步骤的参数(prompt和LM权重)分离,为构建基于LM的应用程序提供了一种更加系统化的方法。然后,DSPy将使用您的程序并自动优化如何为您的特定任务prompt(或微调)lm。

为此,DSPy引入了以下一系列概念:

使用DSPy构建基于lm的应用程序的工作流程,在DSPy入门手册中进行了讨论,如下所示。它会让你想起训练神经网络的工作流程:

1. Collect data, 2. Write DSpy program using Signatures and modules, 3. Define validation logic using teleprompter, 4. Compile DSpy program with DSPy compiler, 5. Iterate

使用DSPy构建基于llm的应用程序的工作流程
  1. 收集数据集: 收集程序输入和输出的一些示例(例如,问题和答案对),这将用于优化您的pipelines。
  2. 编写DSPy程序:SignatureModules定义程序的逻辑以及组件之间的信息流来解决你的任务。
  3. 定义验证逻辑: 定义一个逻辑来使用验证度量和优化器(提词器)来优化你的程序。
  4. 编译DSPy程序: DSPy编译器将训练数据、程序、优化器和验证度量考虑在内,以优化您的程序(例如,prompt或fine-tune)。
  5. 迭代: 通过改进数据、程序或验证来重复这个过程,直到您对pipelines的性能感到满意为止。

以下是与DSPy相关的所有重要链接的简短列表:

DSPy与LangChain或LlamaIndex有何不同?

LangChainLlamaIndex和DSPy都是帮助开发人员轻松构建基于lm的应用程序的框架。使用LangChain和LlamaIndex的典型pipelines通常使用prompts模板实现,这使得整个pipelines对组件更改非常敏感。相比之下,DSPy使构建基于LLM的pipelines远离操作prompts,更接近于编程。

DSPy中新引入的编译器在更改基于LLM的应用程序(如LLM或数据)中的部分时,消除了任何额外的prompt工程或fine-tuning。相反,开发人员可以简单地重新编译程序来优化pipelines以适应新添加的更改。因此,DSPy可以帮助开发人员以比LangChain或LlamaIndex更少的努力获得pipelines的性能。

虽然LangChain和LlamaIndex已经在开发者社区中被广泛采用,但DSPy作为一种新的替代方案已经在同一社区中引起了相当大的兴趣。

DSPy是如何与PyTorch相关的?

如果你有数据科学背景,当你开始使用DSPy时,你会很快注意到它的语法与PyTorch相似。DSPy论文[1]的作者明确指出PyTorch是一个灵感来源。

与PyTorch类似,在PyTorch中,通用层可以在任何模型体系结构中组合,在DSPy中,通用模块可以在任何基于lm的应用程序中组合。此外,编译DSPy程序(其中DSPy模块中的参数是自动优化的)类似于在PyTorch中训练神经网络,其中使用优化器训练模型权重。

下表总结了PyTorch和DSPy之间的相似之处:

Comparison: PyTorch vs. DSPy, Training neural network vs. optimizing LM-based application

比较:PyTorch与DSPy

DSPy规划模型

本节讨论DSPy编程模型引入的以下三个核心概念:

签名(Signatures):抽象prompt和fine-tune

DSPy程序中对LM的每个调用都必须具有自然语言签名(signature),以取代传统的手写prompt。签名是一个简短的函数,它指定一个转换做什么,而不是如何提示LM去做(例如,“使用问题和上下文并返回答案”)。

DSPy signatures replace hand-written prompts.

DSPy签名取代手写prompt。

签名是最小形式的输入和输出字段的元组。

Structure of a minimal DSPy signature consists of one or more input and output fields

最小DSPy签名的结构

下面,您可以看到一些简写语法签名的示例。

1
2
3
4
5
"question -> answer"

"long-document -> summary"

"context, question -> answer"

在许多情况下,这些速记语法签名就足够了。但是,在需要更多控制的情况下,还可以使用以下表示法定义签名。在这种情况下,签名由三个元素组成:

  • LLM要解决的子任务的最小描述,
  • 输入字段的描述
  • 输出字段的描述。

下面,您可以看到签名上下文的完整符号, context, question -> answer:

1
2
3
4
5
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""
context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")

与手写提示相比,签名可以通过为每个签名引导示例编译成自完善和自适应管道的prompt或fine-tune。

模块(Module):抽象提示技术

您可能熟悉几种不同的提示技巧,例如添加Your task is to ...之类的句子。或“You are a ...”在提示开头,思维链(“让我们一步一步地思考”),或者在提示结尾添加 "Don't make anything up"“Only use the provided context”这样的句子。

对DSPy中的模块进行模板化和参数化,以抽象这些提示技术。这意味着它们用于通过应用提示、微调、增强和推理技术使DSPy签名适应任务。

下面,您可以看到如何将签名传递给ChainOfThought模块,然后使用输入字段contextquestion的值进行调用。

1
2
3
4
5
6
7
8
9
# Option 1: Pass minimal signature to ChainOfThought module
generate_answer = dspy.ChainOfThought("context, question -> answer")

# Option 2: Or pass full notation signature to ChainOfThought module
generate_answer = dspy.ChainOfThought(GenerateAnswer)

# Call the module on a particular input.
pred = generate_answer(context = "Which meant learning Lisp, since in those days Lisp was regarded as the language of AI.",
question = "What programming language did the author learn in college?")

下面,您可以看到ChainOfThought模块最初如何实现签名"context, question -> answer"。如果您想自己尝试一下,可以使用lm.inspect_history(n=1)来打印最后一个提示符。

Initial implementation of the signature “context, question -> answer” with a ChainOfThought module

使用ChainOfThought初步实施签名“context, question -> answer”

在撰写本文时,DSPy实现了以下六个Module:

  • dspy.Predict:处理输入和输出字段,生成指令,并为指定的signature创建模板。
  • dspy.ChainOfThought:继承了Predict模块,并增加了“ Chain of Thought “处理的功能。
  • dspy.ChainOfThoughtWithHint:继承了Predict模块,并增强了ChainOfThought模块,增加了提供推理提示的选项。
  • dspy.MultiChainComparison:继承了Predict模块,并增加了多链比较的功能。
  • dspy.Retrieve:从检索器模块检索段落。
  • dspy.ReAct:旨在组成思想,行动和观察的交错步骤。

您可以将这些模块从 dspy.Module继承的类串联起来。这些类还提供了两个方法。你可能已经注意到与PyTorch的语法相似:

  • __init__(): 声明使用的子模块。
  • forward(): 描述已定义的子模块之间的控制流。
1
2
3
4
5
6
7
8
9
10
11
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()

self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)

def forward(self, question):
context = self.retrieve(question).passages
prediction = self.generate_answer(context=context, question=question)
return dspy.Prediction(context=context, answer=prediction.answer)

上面的代码段在RAG()类中定义的模块之间创建了以下信息流:

img

简单的RAG管道示例代码和模块之间产生的信息流。

提词器(Teleprompters):自动提示任意管道

提词器(Teleprompters)作为DSPy程序的优化器。它们采用一个度量,并与DSPy编译器一起学习引导并为DSPy程序的模块选择有效的提示。

1
2
3
4
from dspy.teleprompt import BootstrapFewShot

# Simple teleprompter example
teleprompter = BootstrapFewShot(metric=dspy.evaluate.answer_exact_match)

在撰写本文时,DSPy实现了以下五个提词器:

  • dspy.LabeledFewShot:定义预测器使用的k个样本数。
  • dspy.BootstrapFewShot:引导Few-Shot。
  • dspy.BootstrapFewShotWithRandomSearch:继承了BootstrapFewShot提词器,并为随机搜索过程引入了额外的属性。
  • dspy.BootstrapFinetune:t将提词器定义为用于微调编译的BootstrapFewShot实例。
  • dspy.Ensemble:创建多个程序的集成版本,将不同程序的各种输出减少到单个输出。

还有SignatureOptimizerBayesianSignatureOptimizer,它们在zero/few-shot 设置中改善模块中签名的输出前缀和指令。

不同的提词器在优化成本和质量等方面提供了不同的权衡。

DSPy Compiler

DSPy编译器将在内部跟踪您的程序,然后使用优化器(提词器)对其进行优化,以最大化给定的指标(例如,提高质量或成本)。优化取决于你使用的LM类型:

  • LLMs:构建高质量的few-shot prompt
  • 用于较小的lm:训练自动fine-tune

这意味着DSPy编译器会自动将模块映射到prompt、调优、推理和增强的高质量组合。[1]在内部,编译器在输入上模拟各种版本的程序,并引导每个模块的示例跟踪以进行自我改进,以优化到您的任务的管道。这个过程类似于神经网络的训练过程。

例如,虽然初始提示前面创建的ChainOfThought模块可能是任何LM理解任务的良好起点,但它可能不是最佳提示。如下图所示,DSPy编译器优化了初始提示,从而消除了手动提示调优的需要。

Compiling the initial prompt to an optimized prompt with bootstrapped examples in DSPy

编译器接受以下输入,如下面的代码和图像所示:

  • 程序,
  • 提词器,包括定义的验证度量,以及
  • 一些训练样本。
1
2
3
4
5
6
7
8
9
10
11
12
13
from dspy.teleprompt import BootstrapFewShot

# Small training set with question and answer pairs
trainset = [dspy.Example(question="What were the two main things the author worked on before college?",
answer="Writing and programming").with_inputs('question'),
dspy.Example(question="What kind of writing did the author do before college?",
answer="Short stories").with_inputs('question'),
...
]

# The teleprompter will bootstrap missing labels: reasoning chains and retrieval contexts
teleprompter = BootstrapFewShot(metric=dspy.evaluate.answer_exact_match)
compiled_rag = teleprompter.compile(RAG(), trainset=trainset)

img

DSPy Example: 朴素的RAG pipeline

现在您已经熟悉了DSPy中的所有基本概念,让我们将它们放在您的第一个DSPy pipeline中。

检索增强生成(retrieve -augmented generation, RAG)目前在生成式人工智能领域非常流行。所以,我们搭配一个快速、简单的RAG管道开始学习DSPy才有意义。

对于Jupyter Notebook形式的端到端管道,我建议查看DSPy GitHub存储库中的Intro NotebookConnor ShortenGetting Started with RAG in DSPy Notebook

前提条件:安装DSPy

要安装dspy-ai Python包,可以简单地 pip安装它。

1
pip install dspy-ai

Step 1: 安装

首先,您需要设置LLM和检索模型(RM):

  • LLM: 我们将使用OpenAIgpt-3.5 turbo,你将需要一个OpenAI API密钥。要获得一个,您需要一个OpenAI帐户,然后在API密钥下“创建新的秘密密钥”。
  • RM: 我们将使用Weaviate,一个开源的矢量数据库,我们将填充额外的数据。

让我们从使用来自LlamaIndex GitHub存储库 (MIT许可)的一些示例数据填充外部数据库开始。您可以用您自己的数据替换这部分。

1
2
!mkdir -p 'data'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham_essay.txt'

接下来,我们将把文档拆分为单个句子,并将其摄取到数据库中。为了简单起见,我们将使用本文中嵌入的Weaviate,您可以免费使用它,而无需注册API密钥。请注意,在使用Weaviate时,使用一个名为”content“的属性来摄取数据是很重要的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import weaviate
from weaviate.embedded import EmbeddedOptions
import re

# Connect to Weaviate client in embedded mode
client = weaviate.Client(embedded_options=EmbeddedOptions(),
additional_headers={
"X-OpenAI-Api-Key": "sk-<YOUR-OPENAI-API-KEY>",
}
)

# Create Weaviate schema
# DSPy assumes the collection has a text key 'content'
schema = {
"classes": [
{
"class": "MyExampleIndex",
"vectorizer": "text2vec-openai",
"moduleConfig": {"text2vec-openai": {}},
"properties": [{"name": "content", "dataType": ["text"]}]
}
]
}

client.schema.create(schema)

# Split document into single sentences
chunks = []
with open("./data/paul_graham_essay.txt", 'r', encoding='utf-8') as file:
text = file.read()
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', text)
sentences = [sentence.strip() for sentence in sentences if sentence.strip()]
chunks.extend(sentences)

# Populate vector database in batches
client.batch.configure(batch_size=100) # Configure batch

with client.batch as batch: # Initialize a batch process
for i, d in enumerate(chunks): # Batch import data
properties = {
"content": d,
}
batch.add_data_object(
data_object=properties,
class_name="MyExampleIndex"
)

现在,您可以在全局设置中配置LM和RM。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import dspy
import openai
from dspy.retrieve.weaviate_rm import WeaviateRM

# Set OpenAI API key
openai.api_key = "sk-<YOUR-OPENAI-API-KEY>"

# Configure LLM
lm = dspy.OpenAI(model="gpt-3.5-turbo")

# Configure Retriever
rm = WeaviateRM("MyExampleIndex",
weaviate_client = client)

# Configure DSPy to use the following language model and retrieval model by default
dspy.settings.configure(lm = lm,
rm = rm)

Step 2: 数据收集

接下来,我们将收集一些训练示例(在本例中是手工注释的)。与训练神经网络相比,你只需要几个例子。

1
2
3
4
5
6
7
8
9
10
11
# Small training set with question and answer pairs
trainset = [dspy.Example(question="What were the two main things the author worked on before college?",
answer="Writing and programming").with_inputs('question'),
dspy.Example(question="What kind of writing did the author do before college?",
answer="Short stories").with_inputs('question'),
dspy.Example(question="What was the first computer language the author learned?",
answer="Fortran").with_inputs('question'),
dspy.Example(question="What kind of computer did the author's father buy?",
answer="TRS-80").with_inputs('question'),
dspy.Example(question="What was the author's original plan for college?",
answer="Study philosophy").with_inputs('question'),]

Step 3: 编写DSPy程序

现在,您已经准备好编写第一个DSPy程序了。这将是一个RAG系统。首先,您需要定义签名context, question -> answer ,如Signatures所示,称为GenerateAnswer :

1
2
3
4
5
6
class GenerateAnswer(dspy.Signature):
"""Answer questions with short factoid answers."""

context = dspy.InputField(desc="may contain relevant facts")
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")

在定义了签名之后,您需要编写一个自定义的RAG类,它继承自dspy.Module。在__init__():方法中,您声明相关模块,在forward()方法中,您描述模块之间的信息流。

1
2
3
4
5
6
7
8
9
10
11
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()

self.retrieve = dspy.Retrieve(k=num_passages)
self.generate_answer = dspy.ChainOfThought(GenerateAnswer)

def forward(self, question):
context = self.retrieve(question).passages
prediction = self.generate_answer(context=context, question=question)
return dspy.Prediction(context=context, answer=prediction.answer)

Step 4: 编译DSPy程序

最后,您可以定义提词器并编译DSPy程序。这将更新ChainOfThought模块中使用的提示符。在这个例子中,我们将使用一个简单的BootstrapFewShot提词器。

1
2
3
4
5
6
7
from dspy.teleprompt import BootstrapFewShot

# Set up a basic teleprompter, which will compile our RAG program.
teleprompter = BootstrapFewShot(metric=dspy.evaluate.answer_exact_match)

# Compile!
compiled_rag = teleprompter.compile(RAG(), trainset=trainset)

现在你可以调用你的RAG管道了,如下所示:

1
pred = compiled_rag(question = "What programming language did the author learn in college?")

从这里开始,您可以评估结果并迭代过程,直到您对管道的性能感到满意为止。关于评估的详细说明,我建议查看DSPy GitHub存储库中的Intro NotebookConnor ShortenGetting Started with RAG in DSPy Notebook

总结

本文简要介绍了DSPy框架[1],这是目前生成人工智能社区感到兴奋的。DSPy框架引入了一组概念,将构建基于lm的应用程序从手工提示工程转移到编程。

在DSPy中,传统的提示工程概念被以下内容所取代:

在介绍了DSPy概念之后,本文将带您通过一个简单的RAG管道示例,使用OpenAI语言模型和Weaviate矢量数据库作为检索器模型。

原文:https://towardsdatascience.com/intro-to-dspy-goodbye-prompting-hello-programming-4ca1c6ce3eb9


TorchV AI支持试用!

如您有大模型应用方面的企业需求,欢迎咨询!